TWO THEOREMS ABOUT PROJECTIVE SETS*
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ABSTRACT

In this paper we prove two (rather unrelated) theorems about projective sets,
The first one asserts that subsets of ¥, which are Z; in the codes are construc-
tible; thus it extends the familiar theorem of Shoenfield that Z; subsets of @
are constructible. The second is concerned with largest countable £} setsand
establishes their existence under the hypothesis of Projective Determinacy
and the assumption that there exist only countably many ordinal definable
reals.

1. Preliminaries
Let 0 =1{0,1,2,---} and #="w = the set of reals. We use «,f,y,--- as

variables over Z%. The product spaces are & = X; X ++ x X;, where X; =w or
X;=Z.If P< %, P is called a pointset and we write interchangeably

X € P<> P(x).

The classes X}, IIL, X} 11, etc. of pointsets are defined as usual; see e.g. [7] or
[5] where further information about games and determinacy can be found. We
write Determinacy (I'), where T is a class of pointsets, to indicate that every set
in I' is determined and we put

AD <> Every pointset is determined .
Also let Uniformization (I')<> For every relation P € # x Z in I, there exists

a relation P* in I" such that P* < P and

JaP(a, x) <> 3! aP*(a, X).
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We work entirely in Zermelo-Fraenkel set theory with dependent choices
(ZF + DC) where

(bO) YuexIo(u,v)er=3fYn(f(n),f(n + D)er.

All other hypotheses are stated explicitly. We let OD be the class of all ordinal
definable sets.

Finally we repeat for convenience some definitions from [6].

A norm on a pointset P is a function ¢: P-» A, from P onto an ordinal A, the
ength of ¢. We call ¢ a I'-norm, where I' is a class of pointsets, if there are
relations <, <f inI" and F= {Z — P: P T} respectively, such that

P(y)= Vx(x Sry<x Syy<[P(x) & ¢(x) < ¢(»)])

A scale on a pointset P is a sequence {¢,},., of norms on P such that the
following limit condition holds:

If x,%(, - €P, if lim;,, x;=x and if for each n and all large enough i,
¢,(x;,)=4,, then xe P and for each n, ¢,(x) < 4,.

We call {¢,},., a I'-scale if there are relations Sp(n, x, y), Sr(n,x, y) in I" and
r respectively, such that for each n,

P(y) = Vx(Sr(n, x, y) <> St (n, %, y) < [P(x) & $,(x) < ¢,(»)])

We say that a class of pointsets I" has the scale property and we write Scale (I')
if every set in I has a I'-scale. The basic results in [6] state that

Determinacy (A},) = Scale(T1},, ),
Uniformization(I13, . ,).

2. Subsets of N; which are constructible
For any real « put

<. = {(m,n):a{m,n)) =0},
and LOR = {a: £, is an ordering}
WO = {a: £, is a well ordering}.
IfaeWO, let
l 0!' = length of Z£,.

Then the mapping a —|«|, for xe WO, provides a natural coding system for
ordinals less than ¥, and we define for any A = N, the code set of 4 by

Code(4) = {«: | a| € 4}.
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The question arises, which subsets of ¥, are constructible in terms of the com-
plexity of their code sets. In complete analogy with the result of Shoenfield about
subsets of w, we establish

TuroreM 1. If AS N, and Code(A) is X}, then A is constructible.

Since WO is a II} set, this clearly implies that if 4 <N, and Code (4) is
T1} then A is also constructible. Moreover if Solovay’s 0% exists, then 0% is a
A} subset of w which is not in L (see [10]). It is easy to see that Code (0*) is
A}, so our result is essentially best possible.

The weaker result, when Code (4) is II}; was known to Solovay and is implicit
in [9]. Solovay’s proof uses forcing and cannot be used (apparently) to establish the
full result. Our result can be used to give an easy forcing free proof of Solovay’s
theorem that

AD = (YA =R ) (@A) [AeL[«]].
Our use of closed games to avoid forcing traces to [4].

Before we proceed to the main argument, we state and prove a folk-type result
concerning the absoluteness of closed games. Let . be a set of even finite sequences
from a set A. We define the game G, as follows:

I II I plays ay, II plays b, I then plays
ag by  ay, II plays by, etc., where all a;, b;
a, b, are in A.
Then I wins iff for some n,
(GOa bOa "'9anabn) es.
Clearly the game is open in I.

LEMMA. Let M be a transitive model of ZF 4 DC containing all the ordinals.
Let A, cM and assume A is well orderable in M. Then, I has a winning
strategy in Go<>MEI has a winning strategy in G, and similarly for II.
Moreover the player who has a winning strategy has a winning strategy (for the
game in the world) which lies in M.

Proor. For each (a,, by, ", a,,b,) consider the subgame G.(a,, by, **,4a,,b,)
defined by:
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I II I plays cy,cy, -+, II plays do,dy, -+ and
Co do I wins iff for some m

.cl 6_11 (ao, bOa"'3ambn)ﬁ(co’d0s"'acm’dm)ey-

Then define
S =
FC={(ag, boy*+,ap,b,): 30, €AVD, . €A
I < &((@0, Do+, @pr1, bas 1) €SN}

Then for each &, (ao,bo,---,an,b,)ey5=>1 has a winning strategy in
Gy(ay, by, "+, a,,b,). Using this we show:

II has a winning strategy in G=VE[( ) ¢S]

Proor. If II has a winning strategy in G,=G4(( )), then I has no winning
strategy in Gg(( )); thus for all &, ()¢ &% Conversely assume that for each
& ()¢ F*. We describe a winning strategy for II in G as follows: If I plays a,,
II plays the least b, (in a fixed well ordering of A) such that V¢(ay, bo) ¢ #°. Such
a b, exists, because otherwise for all b, there exists a & such that (ag, b) € %%,
Let g(b) = least such £ and find &, > all g(b), b€ A. Then Vb 3¢ < £y(aq, b) € #5;
thus () e&%, a contradiction. Similarly if I plays a,, II picks the least b, such
that V&(ao, be, ay, by) ¢ 57, etc.

Since the above equivalence was proved under the assumption ““ZF + DC + A
is well orderable’’ and since & — % is clearly an absolute map and M = Ordinals,
it is immediate that ‘“II has a winning strategy”’ is absolute for M; thus the
same is true for ‘I has a winning strategy.”” Moteover the argument above
clearly provides a winning strategy for I which lies in M and wins in the world;
hence it will be enough, in order to complete the proof, to show that when I has a
winning strategy, we can find one (who wins in the world also) in M. Notice that

I has a winning strategy < 3¢[( ) e5%]

and check that the following is a winning strategy for I which lies in M. Put
&y = least & such that () e ¥ If &, = 0, I has already won. If &, > 0, let I play
the least a, such that for every b, 3¢ < Eo(aq, b) € #>. If now II plays by, let
&, = least & < &, such that (aq, bo) € &°. If ¢, =0, I has already won, otherwise
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let I play the least a, such that for all b, 3¢ < &,(ag,by,a,,b)e S5, ete.
(Notice that &, > &, > --+, so this cannot go on.) -
We are now ready to give the

PrOOF OF THEOREM 1. Let 4 <, and Code(4) = Pe X} Then
teAe@n)(xeP&|a|=¢).

Let ae P<>3p Q(a, B)<3B(f (2, B e WO), where QeIl} and f: B x # > R is
recursive and for all o, 8, f(a, f) e LOR. Then

(e A< a3P(f(@, B e WO &|a| =&).
Consider the following game G,:

I II
o a by mo 0o ko
< a; by ny 0, k

« f

I and II play, as in the diagram, natural numbers and ordinals < ¥, and II
wins iff for every n,

either for some i < n, &, = & or all the following are true:

a. The mapping i —n; (i < n) is order preserving on the part of <, 5 already
determined by ((ag, -+, a,), (be,**» b,)) (notice that f is continuous).

b. The mapping i — 0; (i < n) is order preserving on the part of <, already
determined by (aq,:-,a,) and 08; < &, for each i < n.

c. If k; < n, then 0, = ¢; and if (k;, k,> =j < n, then a; =0.

Notice now the following: For & <N, E € A<> 11 has a winning strategy in G;.

PrROOF. Assume ¢ € A4; let o, f be such that f(«, f) e WO and [ a ] = ¢ and let
i —1; be an order preserving map oun < f, 5 into ¥, and i — 0; a mapping from
into ¢ such that its restriction to Field (<,) is an order preserving bijection onto £,
with inverse g. Consider the following strategy for II in G, and verify easily that
it is winning: If I plays &,, II plays a(0), B(0), 1o, 85, g(£,) (unless &, = € in which
case II plays anything). If I plays &,, IT gives a(1), B(1), 1,0y, 9(€,), etc.

Conversely assume I has a winning strategy. Let I play £, ¢, - enumerating
without repetitions ¢, ie., ¢ ={y,&,,&,,--}. Then II plays by his winning
strategy and produces «, f,(0,%1,,), (00,0y,°++), (koo ky,+-) such that i -y, is
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order preserving on < .y, thus f(a, f)e WO, i — 0, is order preserving on £

into &, thus ae WO, and finally ¢, - k; is an inverse to i —» 0, on Field (£)),
hence |a| = ¢ and the proof is complete.

It is clear now that G, = G, where #, is a set of finite sequences and moreover
the map ¢ —» %, is absolute for L. Thus for £ <N,

¢ €A <> II has a winning strategy in G,
<> L F I has a winning strategy in G,
So A is definable in L and therefore 4 € L. Notice that the definition of A4 involves
as the only parameter N; thus 4 = 7"(N,) for some term . —

ReMaRk. 1. It is clear that the proof of Theorem 1 relativizes to any real a.
Thus if we put

L = {x: 3u(x e L[«])}

we have A =¥, & Code(d)e X} = A e L. Kechris has proved a converse assuming
Va(a® exists) (see [10] for this notation), namely

Ya(a* exists) = Every AeL,A = N, has Code (A) € 3.
Thus Va(ax® exists) implies
*) AR, = (AdeL<Code (A) e XY).
A proof will appear in his thesis. Moreover (*) can be shown to be consistent with
ZF using ideas of [3].

REMARK 2. Let C < % be a complete 1] set (i.e., for every Be IT}, there is a
recursive f: Z — Z such that o € B<>f () € C). Let ¢ be a IIj-norm on C. Then
¢ has length ¥, (see [5], p. 55). Thus it provides a coding system for ordinals
< N, and we can set for 4 = N,

Codey(A) = {xe C: ¢(a) € A}.
Then we can again establish

Codey(A)e X}= AeL.

The reason is that if Codey(4) € ¥}, then Code(Ad) € X}, since a simple computa-
tion shows that the relation

2eC&BeWO & () =| B

isa X} relation.
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3. Largest countable X}, sets

Solovay in [8] has proved the following theorem:

Assume l 174 (\Ll = N,. Then there exists a largest countable X} set of reals,
namely # N L. Our next result extends this theorem to higher levels of the
analytical hierachy.

THEOREM 2. Assume | # NOD|=NX,. Then if Determinacy (A;,) holds,
there exists a largest countable X}, , set.

Before we proceed to the proof let us establish some notation. Let k¥ be an
ordinal. A tree T on w X k is a set of finite sequences from w X x such that if
ue T and vis a subsequence of u then ve T. For each such tree T we define the
set of its branches by

[T] = {(&.f) €% x °K: Vn(@(0)./©), , @ln), f(m) € T}

and we put

plT] = {a:3f (/) e[T]}.
Mansfield in [2] has proved the following theorem:

Assume T is a tree on o X k and A = p[T|. Then if A contains an element not
in L[T], A contains a perfect set. (Mansfield used a forcing argument to prove
his theorem; later Solovay gave a new forcing-free proof; for more details see [1].)
Now let A < % and assume {9, }, .., is a scale on A. We define the tree T associated
with this scale by

T = {((2(0), $o(@)), **+, (a(n), P, (20))): € A}.
Then 4 = p[T).

PROOF OF THEOREM 2. By the main theorem in [6], Determinacy(A,) implies
Uniformization (I1}, ;). Thus for every countable X}, ., set A, we can find a
countable II},,, set B, so that every real in 4 is recursive in some real in B. Thus
it will be enough to find a countable X},,, set C which contains all countable
I, sets. Then C* = {a: 3f(B € C&  is recursive in f)} is the largest countable
3,42 set.

Let W< o x % be universal for II},,, subsets of Z and put

oae P<(u(0),a) e W,

where o = (a(1),x(2), ). Let also (by Scale(IT},,,)) {Pnlneo be a I13,, -scale
on 2. Let T be the tree associated with this scale.
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We now define C and show that it works:
ae Ces(@m) (m ae P&| {B: do(m” B) < do(m W)}| < No)
1. CeXinia
Proor. Notice that
aeCeIm[n " we P &INS[po(m” 8) < do(m &) = Ik(E = ¥))]]

2. C contains every countable Hzl,,ﬂ set.

PrOOF. Let BeIlj, ., B< %, |B| < N,. Find m such that f € B<>(m, ) W
<m BeP. If B&C, let BoeB—C. Put & =do(m Bo). Then since B¢ C,
] {B: do(m B) < é}| >Ng; but B 2 {m’73 € P: ¢po(m P) £ &}, a contradiction.

3. C< LIT] < 0OD; thus | C |=¥X,.

ProOF. Tt is enough to show that if for some m,¢,| {B: qﬁo(mﬁﬁ) < f}l =< ¥o»
then {m Be 2:¢o(m” B= &} < L[T]. Put T,p={(ko, &) (ki EN €T ko
=m&¢&, <&} Clearly T, ,cL[T] and the limit property of scales shows that
aep[T, ] < aeP&po(®) < E&u0) = m. Thus {mﬁ‘} EP: (po(mAﬁ) <&
= p[T,.:] and so by Mansfield’s Theorem

[{B: dolm” B) S &} < No=
(m Be P: ¢po(m B)< & < L[T, ]S L[T]. -
We conclude with an open problem:
It is well known that every countable Y.} set contains only A} reals. Thus there

is no largest countable Y| set. Does either of these results generalize to X},
(n = 1) under any reasonable hypotheses?

REMARK. After seeing a preliminary version of this paper, D. A. Martin observed
that ] Z N ODI = N, can be replaced by Projective Determinacy in the statement
of Theorem 2.

Added in proof: After the completion of this paper Kechris proved (assuming
Projective Determinacy) the existence of largest countable i, sets (for
n = 0 this has been also proved independently by Sacks). He also proved (assum-
ing PD) the non-existence of largest countable X3, ; sets. Moreover Moschovakis
has shown that countable A},,, sets contain only AL, ., reals. If this is true
for X3, is still open.
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