TWO THEOREMS ABOUT PROJECTIVE SETS¹

BY

ALEXANDER S. KECHRIS AND YIANNIS N. MOSCHOVAKIS[†]

ABSTRACT

In this paper we prove two (rather unrelated) theorems about projective sets. The first one asserts that subsets of \aleph_1 which are Σ_2^1 in the codes are constructible; thus it extends the familiar theorem of Shoenfield that Σ_2^1 subsets of ω are constructible. The second is concerned with largest countable $\sum_{i=1}^{1}$ sets and establishes their existence under the hypothesis of Projective Determinacy and the assumption that there exist only countably many ordinal definable reals.

1. Preliminaries

Let $\omega = \{0,1,2,\dots\}$ and $\mathcal{R} = \omega$ is the set of *reals.* We use $\alpha, \beta, \gamma, \dots$ as variables over \mathcal{R} . The *product spaces* are $\mathcal{X} = X_1 \times \cdots \times X_k$, where $X_i = \omega$ or $X_i = \mathcal{R}$. If $P \subseteq \mathcal{X}$, P is called a *pointset* and we write interchangeably

$$
x\in P \Leftrightarrow P(x).
$$

The classes $\sum_{n}^{1} \prod_{n}^{1} \sum_{n}^{1} \prod_{n}^{1}$, etc. of pointsets are defined as usual; see e.g. [7] or [5] where further information about games and determinacy can be found. We write *Determinacy* (Γ) , where Γ is a class of pointsets, to indicate that every set in Γ is determined and we put

 $AD \Leftrightarrow Every$ pointset is determined.

Also let *Uniformization* (Γ) \Leftrightarrow For every relation $P \subseteq \mathcal{R} \times \mathcal{X}$ in Γ , there exists a relation P^* in Γ such that $P^* \subseteq P$ and

$$
\exists \alpha P(\alpha, x) \Leftrightarrow \exists! \alpha P^*(\alpha, x).
$$

^{\dagger} Y. N. Moschovakis is a Sloan Foundation Fellow. During the preparation of this paper, both authors were partially supported by NSF Grant GP-27964.

Received October 19, 1971.

We work entirely in Zermelo-Fraenkel set theory with *dependent choices* $(ZF + DC)$ where

(DC)
$$
\forall u \in x \exists v(u,v) \in r \Rightarrow \exists f \forall n (f(n), f(n+1)) \in r.
$$

All other hypotheses are stated explicitly. We let *OD* be the class of all ordinal definable sets.

Finally we repeat for convenience some definitions from [6].

A norm on a pointset *P* is a function $\phi: P \rightarrow \lambda$, from *P onto* an ordinal λ , the *ength* of ϕ . We call ϕ a *F-norm*, where *F* is a class of pointsets, if there are relations \leq_{Γ} , \leq_{Γ} in Γ and $\breve{\Gamma} = \{ \mathscr{X} - P : P \in \Gamma \}$ respectively, such that

$$
P(y) \Rightarrow \forall x (x \leq_{\Gamma} y \Leftrightarrow x \leq_{\widetilde{\Gamma}} y \Leftrightarrow [P(x) \& \phi(x) \leq \phi(y)]
$$

A scale on a pointset *P* is a sequence $\{\phi_n\}_{n \in \mathbb{N}}$ of norms on *P* such that the following *limit condition* holds:

If $x_0, x_1, \dots \in P$, if $\lim_{i \to \infty} x_i = x$ and if for each n and all large enough i, $\phi_n(x_i) = \lambda_n$, then $x \in P$ and for each n, $\phi_n(x) \leq \lambda_n$.

We call $\{\phi_n\}_{n \in \omega}$ a *F-scale* if there are relations $S_{\Gamma}(n, x, y)$, $S_{\Gamma}(n, x, y)$ in *F* and $\overline{\Gamma}$ respectively, such that for each *n*,

$$
P(y) \Rightarrow \forall x (S_{\Gamma}(n, x, y) \Leftrightarrow S_{\Gamma}(n, x, y) \Leftrightarrow [P(x) \& \phi_n(x) \leq \phi_n(y)]).
$$

We say that a class of pointsets Γ has the *scale property* and we write *Scale* (Γ) if every set in Γ has a Γ -scale. The basic results in [6] state that

$$
Determinacy (\Delta_{2n}^1) \Rightarrow Scale(\Pi_{2n+1}^1),
$$

Uniformization(Π_{2n+1}^1).

2. Subsets of \aleph_1 which are constructible

For any real α put

$$
\leq_{\alpha} = \{(m, n) : \alpha(\langle m, n \rangle) = 0\},
$$

$$
LOR = \{\alpha : \leq_{\alpha} \text{ is an ordering}\}
$$

$$
WO = \{\alpha : \leq_{\alpha} \text{ is a well ordering}\}.
$$

and

If $\alpha \in WO$, let

$$
|\alpha| = \text{length of } \leq_{\alpha}.
$$

Then the mapping $\alpha \rightarrow |\alpha|$, for $\alpha \in WO$, provides a natural coding system for ordinals less than \aleph_1 and we define for any $A \subseteq \aleph_1$ the code set of A by

$$
Code(A) = \{\alpha : \big|\alpha\big| \in A\}.
$$

The question arises, which subsets of \aleph_1 are constructible in terms of the complexity of their code sets. In complete analogy with the result of Shoenfield about subsets of ω , we establish

THEOREM 1. *If* $A \subseteq \aleph_1$ *and Code*(*A*) is \sum_2^1 *, then A is constructible.*

Since *WO* is a Π_1^1 set, this clearly implies that if $A \subseteq N_1$ and *Code* (A) is Π_2^1 then A is also constructible. Moreover if Solovay's 0^* exists, then 0^* is a Δ_3^1 subset of ω which is not in L (see [10]). It is easy to see that *Code* (0[#]) is Δ_3^1 , so our result is essentially best possible.

The weaker result, when $Code(A)$ is Π_1^1 ; was known to Solovay and is implicit in [9]. Solovay's proof uses forcing and cannot be used (apparently) to establish the full result. Our result can be used to give an easy forcing free proof of Solovay's theorem that

$$
AD \Rightarrow (\forall A \subseteq \aleph_1)(\exists \alpha) [A \in L[\alpha]].
$$

Our use of closed games to avoid forcing traces to [4].

Before we proceed to the main argument, we state and prove a folk-type result concerning the absoluteness of closed games. Let $\mathscr S$ be a set of even finite sequences from a set A. We define the game G_{φ} as follows:

Clearly the game is open in I.

LEMMA. *Let M be a transitive model of ZF + DC containing all the ordinals.* Let $A, \mathscr{S} \in M$ and assume A is well orderable in M. Then, I has a winning *strategy in* $G_{\varphi} \Leftrightarrow M \models I$ has a winning strategy in G_{φ} , and similarly for II. *Moreover the player who has a winning strategy has a winning strategy (for the game in the world) which lies in M.*

PROOF. For each $(a_0, b_0, \dots, a_n, b_n)$ consider the subgame $G_{\mathscr{S}}(a_0, b_0, \dots, a_n, b_n)$ defined by:

I I plays
$$
c_0, c_1, \dots, II
$$
 plays d_0, d_1, \dots and
\n c_0 d_0 *I* wins iff for some *m*
\n c_1 d_1 $(a_0, b_0, \dots, a_n, b_n) \cap (c_0, d_0, \dots, c_m, d_m) \in \mathcal{S}$.

Then define

$$
\mathcal{S}^{\xi} = \{ (a_0, b_0, \cdots, a_n, b_n) : \exists a_{n+1} \in A \; \forall b_{n+1} \in A
$$

$$
\exists \eta < \xi((a_0, b_0, \cdots, a_{n+1}, b_{n+1}) \in \mathcal{S}^{\eta}) \}.
$$

 $\mathscr{S}^0 = \mathscr{S}$

Then for each ξ , $(a_0, b_0, \dots, a_n, b_n) \in \mathcal{S}^{\xi} \Rightarrow I$ has a winning strategy in $G_{\mathscr{L}}(a_0, b_0, \dots, a_n, b_n)$. Using this we show:

II has a winning strategy in $G \Leftrightarrow \forall \xi$ [() $\notin \mathcal{S}^{\xi}$].

PROOF. If *II* has a winning strategy in $G_{\mathscr{S}} = G_{\mathscr{S}}(())$, then *I* has no winning strategy in $G_{\varphi}((\))$; thus for all ξ , $(\)\notin \mathscr{S}^{\xi}$. Conversely assume that for each ξ , () $\notin \mathcal{S}^{\xi}$. We describe a winning strategy for *II* in $G_{\mathcal{S}}$ as follows: If *I* plays a_0 , H plays the least b_0 (in a fixed well ordering of A) such that $\forall \xi(a_0, b_0) \notin \mathcal{S}^{\xi}$. Such a b_0 exists, because otherwise for all b, there exists a ξ such that $(a_0, b) \in \mathcal{S}^{\xi}$. Let $g(b)$ = least such ξ and find $\xi_0 >$ all $g(b), b \in A$. Then $\forall b \exists \xi < \xi_0(a_0, b) \in \mathcal{S}^{\xi}$; thus () $\in \mathcal{S}^{\xi_0}$, a contradiction. Similarly if I plays a_1 , II picks the least b_1 such that $\forall \xi(a_0, b_0, a_1, b_1) \notin \mathcal{S}^{\xi}$, etc.

Since the above equivalence was proved under the assumption $"ZF + DC + A$ is well orderable" and since $\xi \rightarrow \mathcal{S}^{\xi}$ is clearly an absolute map and $M \supseteq$ Ordinals, it is immediate that *"II* has a winning strategy" is absolute for M; thus the same is true for "I has a winning strategy." Moreover the argument above clearly provides a winning strategy for *II* which lies in M and wins in the world; hence it will be enough, in order to complete the proof, to show that when I has a winning strategy, we can find one (who wins in the world also) in M . Notice that

I has a winning strategy \Leftrightarrow $\exists \xi$ [() $\in \mathscr{S}^{\xi}$]

and check that the following is a winning strategy for I which lies in M . Put $\xi_0 =$ least ξ such that $() \in \mathcal{S}^{\xi}$. If $\xi_0 = 0$, I has already won. If $\xi_0 > 0$, let I play the least a_0 such that for every $b, \exists \xi < \xi_0(a_0, b) \in \mathcal{S}^{\xi}$. If now II plays b_0 , let $\xi_1 =$ least $\xi < \xi_0$ such that $(a_0, b_0) \in \mathcal{S}^{\xi}$. If $\xi_1 = 0$, I has already won, otherwise

Vol. 12, 1972 **PROJECTIVE SETS** 395

let *I* play the least a_1 such that for all b , $\exists \xi < \xi_1(a_0, b_0, a_1, b) \in \mathcal{S}^{\xi}$, etc. (Notice that $\xi_0 > \xi_1 > \cdots$, so this cannot go on.) \neg

We are now ready to give the

PROOF OF THEOREM 1. Let $A \subseteq N_1$ and $Code(A) = P \in \sum_{i=1}^{n}$. Then

$$
\xi \in A \Leftrightarrow (\exists \alpha) (\alpha \in P \& \big| \alpha \big| = \xi).
$$

Let $\alpha \in P \Leftrightarrow \exists \beta \ Q(\alpha, \beta) \Leftrightarrow \exists \beta (f(\alpha, \beta) \in WO)$, where $Q \in \Pi_1^1$ and $f: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is recursive and for all $\alpha, \beta, f(\alpha, \beta) \in LOR$. Then

$$
\xi \in A \Leftrightarrow \exists \alpha \exists \beta (f(\alpha, \beta) \in WO \& |\alpha| = \xi).
$$

Consider the following game G_{ξ} :

I and II play, as in the diagram, natural numbers and ordinals $\langle \aleph_1 \rangle$ and II wins *iff for every n,*

either for some $i \leq n$, $\xi_i \geq \xi$ or all the following are true:

a. The mapping $i \rightarrow \eta_i$ ($i \leq n$) is order preserving on the part of $\leq \eta_i \eta_i$ already determined by $((a_0, \dots, a_n), (b_0, \dots, b_n))$ (notice that f is continuous).

b. The mapping $i \rightarrow \theta_i$ ($i \leq n$) is order preserving on the part of \leq_{α} already determined by (a_0, \dots, a_n) and $\theta_i < \xi$, for each $i \leq n$.

c. If $k_i \leq n$, then $\theta_{k_i} = \xi_i$ and if $\langle k_i, k_i \rangle = j \leq n$, then $a_i = 0$.

Notice now the following: *For* $\xi < \aleph_1$, $\xi \in A \Leftrightarrow II$ has a winning strategy in G_{ξ} .

PROOF. Assume $\xi \in A$; let α , β be such that $f(\alpha, \beta) \in WO$ and $|\alpha| = \xi$ and let $i \rightarrow \eta_i$ be an order preserving map on $\leq f(a,\beta)$ into \aleph_1 and $i \rightarrow \theta_i$ a mapping from ω into ζ such that its restriction to Field (\leq_{α}) is an order preserving bijection onto ζ , with inverse g. Consider the following strategy for II in G_{ξ} and verify easily that it is winning: If *I* plays ξ_0 , *II* plays $\alpha(0)$, $\beta(0)$, η_0 , θ_0 , $g(\xi_0)$ (unless $\xi_0 \ge \xi$ in which case *II* plays anything). If *I* plays ξ_1 , *II* gives $\alpha(1)$, $\beta(1)$, η_1 , θ_1 , $g(\xi_1)$, etc.

Conversely assume *II* has a winning strategy. Let *I* play ξ_0, ξ_1, \cdots enumerating without repetitions ξ , i.e., $\xi = {\xi_0, \xi_1, \xi_2, \cdots}$. Then *II* plays by his winning strategy and produces $\alpha, \beta, (\eta_0, \eta_1, \cdots), (\theta_0, \theta_1, \cdots), (k_0, k_1, \cdots)$ such that $i \rightarrow \eta_i$ is order preserving on $\leq_{f(\alpha,\beta)}$, thus $f(\alpha,\beta) \in WO$, $i \to \theta_i$ is order preserving on \leq_{α} into ξ , thus $\alpha \in WO$, and finally $\xi_i \rightarrow k_i$ is an inverse to $i \rightarrow \theta_i$ on Field (\leq_{α}), hence $|\alpha| = \xi$ and the proof is complete.

It is clear now that $G_{\xi} = G_{\mathscr{S}_{\xi}}$ where \mathscr{S}_{ξ} is a set of finite sequences and moreover the map $\xi \to \mathscr{S}_{\xi}$ is absolute for L. Thus *for* $\xi < \aleph_1$,

 $\xi \in A \Leftrightarrow II$ has a winning strategy in $G_{\mathscr{L}_*}$

 \Leftrightarrow *L* \models *II* has a winning strategy in $G_{\mathscr{S}_{\ast}}$.

So A is definable in L and therefore $A \in L$. Notice that the definition of A involves as the *only* parameter N_1 ; thus $A = \tau^L(N_1)$ for some term τ .

REMARK. 1. It is clear that the proof of Theorem 1 relativizes to any real α . Thus if we put

$$
\tilde{L} = \{x : \exists \alpha (x \in L[\alpha])\}
$$

we have $A \subseteq N_1 \& Code(A) \in \sum_2^1 \Rightarrow A \in \tilde{L}$. Kechris has proved a converse assuming $\forall \alpha (\alpha^*$ exists) (see [10] for this notation), namely

$$
\forall \alpha(\alpha^{\#} \text{ exists}) \Rightarrow Every \ A \in L, A \subseteq \aleph_1 \text{ has Code } (A) \in \sum_{i=1}^{n} A_i
$$

Thus $\forall \alpha (\alpha^*$ exists) implies

$$
A \subseteq \aleph_1 \Rightarrow (A \in \widetilde{L} \Leftrightarrow Code \ (A) \in \Sigma_2^1).
$$

A proof will appear in his thesis. Moreover (*) can be shown to be consistent with ZF using ideas of [3].

REMARK 2. Let $C \subseteq \mathcal{R}$ be a complete Π_1^1 set (i.e., for every $B \in \Pi_1^1$, there is a recursive $f: \mathcal{R} \to \mathcal{R}$ such that $\alpha \in B \Leftrightarrow f(\alpha) \in C$). Let ϕ be a Π_1^1 -norm on C. Then ϕ has length \aleph_1 (see [5], p. 55). Thus it provides a coding system for ordinals $\langle \cdot \rangle$ and we can set for $A \subseteq \aleph_1$,

$$
Code_{\phi}(A) = \{ \alpha \in C : \phi(\alpha) \in A \}.
$$

Then we can again establish

$$
Code_{\phi}(A) \in \Sigma_2^1 \Rightarrow A \in L.
$$

The reason is that if $Code_{\phi}(A) \in \sum_{i=1}^{1}$, then $Code(A) \in \sum_{i=1}^{1}$, since a simple computation shows that the relation

$$
\alpha \in C \& \beta \in WO \& \phi(\alpha) = |\beta|
$$

is a Σ_2^1 relation.

3. Largest countable $\sum_{n=1}^{1}$ **sets**

Solovay in [8] has proved the following theorem:

Assume $|\Re \cap L| = \aleph_0$. *Then there exists a largest countable* \sum_2^1 *set of reals, namely* $\mathscr{R} \cap L$ *.* Our next result extends this theorem to higher levels of the analytical hierachy.

THEOREM 2. *Assume* $|\Re \cap OD| = \aleph_0$. Then if Determinacy (Δ_{2n}^1) holds, *there exists a largest countable* $\sum_{n=1}^{1}$ *set.*

Before we proceed to the proof let us establish some notation. Let κ be an ordinal. A *tree* T on $\omega \times \kappa$ is a set of finite sequences from $\omega \times \kappa$ such that if $u \in T$ and v is a subsequence of u then $v \in T$. For each such tree T we define the set of its branches by

$$
[T] = \{(\alpha, f) \in {}^{\omega}\omega \times {}^{\omega}\kappa \colon \forall n((\alpha(0), f(0)), \cdots, (\alpha(n), f(n))) \in T\}
$$

and we put

$$
p[T] = \{\alpha : \exists f(\alpha, f) \in [T]\}.
$$

Mansfield in [2] has proved the following theorem:

Assume T is a tree on $\omega \times \kappa$ *and* $A = p[T]$ *. Then if A contains an element not in LIT], A contains a perfect set.* (Mansfield used a forcing argument to prove his theorem; later Solovay gave a new forcing-free proof; for more details see [1].) Now let $A \subseteq \mathcal{R}$ and assume $\{\phi_n\}_{n \in \omega}$ is a scale on A. We define the tree T associated with this scale by

$$
T = \{((\alpha(0), \phi_0(\alpha)), \cdots, (\alpha(n), \phi_n(\alpha))) : \alpha \in A\}.
$$

Then $A = p[T]$.

PROOF OF THEOREM 2. By the main theorem in [6], *Determinacy*(Δ_{2n}^1) implies *Uniformization* (Π_{2n+1}^1). Thus for every countable Σ_{2n+2}^1 set A, we can find a countable Π_{2n+1}^1 set B, so that every real in A is recursive in some real in B. Thus it will be enough to find a countable Σ_{2n+2}^1 set C which contains all countable Π_{2n+1}^1 sets. Then $C^* = {\alpha : \exists \beta(\beta \in C\& \alpha \text{ is recursive in } \beta)}$ is the largest countable \sum_{2n+2}^{1} set.

Let $W \subseteq \omega \times \mathcal{R}$ be universal for Π_{2n+1}^1 subsets of \mathcal{R} and put

$$
\alpha\in\mathscr{P}\Leftrightarrow(\alpha(0),\alpha')\in W,
$$

where $\alpha' = (\alpha(1), \alpha(2), \cdots)$. Let also (by *Scale* (Π_{2n+1}^1)) $\{\phi_n\}_{n \in \omega}$ be a Π_{2n+1}^1 -scale on \mathscr{P} . Let T be the tree associated with this scale.

We now define C and show that it works:

$$
\alpha \in C \Leftrightarrow (\exists m)(m \ \alpha \in \mathscr{P} \& \big| \{\beta : \phi_0(m \ \beta) \leq \phi_0(m \ \alpha) \big\} \big| \leq \aleph_0)
$$

1. $C \in \sum_{2n+2}^{1}$

PROOF. Notice that

$$
\alpha \in C \Leftrightarrow \exists m \big[m \widehat{\alpha} \in \mathscr{P} \& \exists \gamma \forall \delta \big[\phi_0(m \widehat{\delta}) \leq \phi_0(m \widehat{\alpha}) \Rightarrow \exists k(\delta = (\gamma)_k) \big] \big]
$$

2. C contains every countable Π_{2n+1}^1 set.

PROOF. Let $B \in \Pi_{2n+1}^1$, $B \subseteq \mathcal{R}$, $|B| \leq N_0$. Find m such that $\beta \in B \Leftrightarrow (m, \beta) \in W$ $\Leftrightarrow m^{\frown}\beta \in \mathscr{P}$. If $B \not\equiv C$, let $\beta_0 \in B-C$. Put $\xi = \phi_0(m^{\frown}\beta_0)$. Then since $\beta_0 \notin C$, $|\{\beta: \phi_0(m^{\frown}\beta) \leq \xi\}| > \aleph_0$; but $B \supseteq \{m^{\frown}\beta \in \mathcal{P}: \phi_0(m^{\frown}\beta) \leq \xi\}$, a contradiction. 3. $C \subseteq L[T] \subseteq OD$; thus $|C| = \aleph_0$.

PROOF. It is enough to show that if for some $m, \xi, |\{\beta : \phi_0(m^{\frown}\beta) \leq \xi\}| \leq \aleph_0$, then $\{m\}\in \mathcal{P}: \phi_0(m\widehat{\beta}) \leq \xi\} \subseteq L[T]$. Put $T_{m,\xi} = \{((k_0,\xi_0),\cdots,(k_k,\xi_l))\in T: k_0$ $=m \& \zeta_0 \leq \zeta$. Clearly $T_{m,\zeta} \in L[T]$ and the limit property of scales shows that $\alpha \in p[T_{m,\xi}] \Leftrightarrow \alpha \in \mathscr{P} \& \varphi_0(\alpha) \leq \xi \& \alpha(0) = m$. Thus $\{m \stackrel{\frown}{\beta} \in \mathscr{P} : \varphi_0(m \stackrel{\frown}{\beta}) \leq \xi\}$ $= p[T_{m,\xi}]$ and so by Mansfield's Theorem

$$
\left| \{ \beta : \phi_0(m \hat{\beta}) \le \xi \} \right| \le \aleph_0 \Rightarrow
$$

$$
\{ m \hat{\beta} \in \mathcal{P} : \phi_0(m \hat{\beta}) \le \xi \} \subseteq L[T_{m,\xi}] \subseteq L[T]. \quad \{ \}
$$

We conclude with an open problem:

It is well known that every countable Σ_1^1 set contains only Δ_1^1 reals. Thus there is no largest countable Σ_1^1 set. Does either of these results generalize to Σ_{2n+1}^1 $(n \ge 1)$ under any reasonable hypotheses?

REMARK. After seeing a preliminary version of this paper, D. A. Martin observed that $|\mathcal{R} \cap OD| = \aleph_0$ can be replaced by Projective Determinacy in the statement of Theorem 2.

Added in proof: After the completion of this paper Kechris proved (assuming Projective Determinacy) the existence of largest countable Π_{2n+1}^{1} sets (for $n = 0$ this has been also proved independently by Sacks). He also proved (assuming *PD*) the non-existence of largest countable Σ_{2n+1}^1 sets. Moreover Moschovakis has shown that countable Δ_{2n+1}^1 sets contain only Δ_{2n+1}^1 reals. If this is true for Σ_{2n+1}^1 is still open.

REFERENCES

1. A. S. Kechris and Y. N. Moschovakis, *Notes on the theory of scales,* unpublished multilithed manuscript.

2. R. Mansfield, *Perfect subsets of definable sets of real numbers,* Pacific J. Math. (2) 35 $(1970), 451 - 457.$

3. D. A. Martin and R. M. Solovay, *Internal Cohen extensions, Ann.* of Math. Logic 2 (1970), 143-178.

4. Y. N. Moschovakis, The *Suslin-Kleene theorem for countable structures,* Duke Math. J. (2) 37 (1970), 341-352.

5. Y. N. Moschovakis, Determinancy and pre-well-orderings of the continuum, *Mathematleal Logic and Foundations of Set Theory,* Editedby Y. Bar Hillel, North-Holland, Amsterdam, London, 1970, 24-62.

6, Y. N. Moschovakis, *Uniformization in a playful universe,* Bull. Amer. Math. Soc. 77 (1971), 731-736.

7. J. Shoenfield, *MathematicaI Logic,* Addison-Wesley, 1967.

8. R. M. Solovay, *On the cardinality of* Σ_2^1 sets of reals, Foundations of Mathematics, Symposium papers commemorating the 60th Birthday of Kurt Gödel, Springer-Verlag, 1966, 58-73.

9. R. M. Solovay, *Measurable cardinals and the axiom of determinatenes,* Lecture notes prepared in connection with the Summer Institute of Axiomatic Set Theory held at UCLA, Summer 1967.

10. R. M. Solovay, *A non-constructible* Δ_3^1 set of integers, Trans. Amer. Math. Soc. 127 (1967), 50-75.

UNIVERSITY OF CALIFORNIA, Los ANGELES