TWO THEOREMS ABOUT PROJECTIVE SETS¹

BY

ALEXANDER S. KECHRIS AND YIANNIS N. MOSCHOVAKIS[†]

ABSTRACT

In this paper we prove two (rather unrelated) theorems about projective sets. The first one asserts that subsets of \aleph_1 which are Σ_2^1 in the codes are constructible; thus it extends the familiar theorem of Shoenfield that Σ_2^1 subsets of ω are constructible. The second is concerned with largest countable Σ_{2n}^1 sets and establishes their existence under the hypothesis of Projective Determinacy and the assumption that there exist only countably many ordinal definable reals.

1. Preliminaries

Let $\omega = \{0, 1, 2, \dots\}$ and $\mathscr{R} = {}^{\omega}\omega =$ the set of reals. We use $\alpha, \beta, \gamma, \dots$ as variables over \mathscr{R} . The product spaces are $\mathscr{X} = X_1 \times \dots \times X_k$, where $X_i = \omega$ or $X_i = \mathscr{R}$. If $P \subseteq \mathscr{X}$, P is called a *pointset* and we write interchangeably

$$x \in P \Leftrightarrow P(x)$$
.

The classes $\sum_{n=1}^{1} \prod_{n=1}^{1} \sum_{n=1}^{1} \prod_{n=1}^{1} \prod_{n$

 $AD \Leftrightarrow Every$ pointset is determined.

Also let Uniformization (Γ) \Leftrightarrow For every relation $P \subseteq \mathscr{R} \times \mathscr{X}$ in Γ , there exists a relation P^* in Γ such that $P^* \subseteq P$ and

$$\exists \alpha P(\alpha, x) \Leftrightarrow \exists ! \alpha P^*(\alpha, x).$$

[†] Y. N. Moschovakis is a Sloan Foundation Fellow. During the preparation of this paper, both authors were partially supported by NSF Grant GP-27964.

Received October 19, 1971.

We work entirely in Zermelo-Fraenkel set theory with *dependent choices* (ZF + DC) where

(DC)
$$\forall u \in x \exists v(u, v) \in r \Rightarrow \exists f \forall n (f(n), f(n+1)) \in r.$$

All other hypotheses are stated explicitly. We let OD be the class of all ordinal definable sets.

Finally we repeat for convenience some definitions from [6].

A norm on a pointset P is a function $\phi: P \twoheadrightarrow \lambda$, from P onto an ordinal λ , the ength of ϕ . We call ϕ a Γ -norm, where Γ is a class of pointsets, if there are relations $\leq_{\Gamma}, \leq_{\overline{\Gamma}}$ in Γ and $\overline{\Gamma} = \{\mathscr{X} - P : P \in \Gamma\}$ respectively, such that

$$P(y) \Rightarrow \forall x (x \leq_{\Gamma} y \Leftrightarrow x \leq_{\widetilde{\Gamma}} y \Leftrightarrow [P(x) \& \phi(x) \leq \phi(y)])$$

A scale on a pointset P is a sequence $\{\phi_n\}_{n \in \omega}$ of norms on P such that the following *limit condition* holds:

If $x_0, x_1, \dots \in P$, if $\lim_{i \to \infty} x_i = x$ and if for each *n* and all large enough *i*, $\phi_n(x_i) = \lambda_n$, then $x \in P$ and for each *n*, $\phi_n(x) \leq \lambda_n$.

We call $\{\phi_n\}_{n \in \omega}$ a Γ -scale if there are relations $S_{\Gamma}(n, x, y)$, $S_{\overline{\Gamma}}(n, x, y)$ in Γ and $\overline{\Gamma}$ respectively, such that for each n,

$$P(y) \Rightarrow \forall x (S_{\Gamma}(n, x, y) \Leftrightarrow S_{\overline{\Gamma}}(n, x, y) \Leftrightarrow [P(x) \& \phi_n(x) \leq \phi_n(y)]).$$

We say that a class of pointsets Γ has the scale property and we write Scale (Γ) if every set in Γ has a Γ -scale. The basic results in [6] state that

Determinacy
$$(\Delta_{2n}^1) \Rightarrow Scale(\Pi_{2n+1}^1),$$

Uniformization $(\Pi_{2n+1}^1).$

2. Subsets of \aleph_1 which are constructible

For any real α put

$$\leq_{\alpha} = \{(m, n) : \alpha(\langle m, n \rangle) = 0\},\$$

$$LOR = \{\alpha : \leq_{\alpha} \text{ is an ordering}\}$$

$$WO = \{\alpha : \leq_{\alpha} \text{ is a well ordering}\}.$$

and

If $\alpha \in WO$, let

$$|\alpha| = \text{length of } \leq_{\alpha}$$
.

Then the mapping $\alpha \to |\alpha|$, for $\alpha \in WO$, provides a natural coding system for ordinals less than \aleph_1 and we define for any $A \subseteq \aleph_1$ the code set of A by

$$Code(A) = \{ \alpha \colon | \alpha | \in A \}.$$

392

PROJECTIVE SETS

The question arises, which subsets of \aleph_1 are constructible in terms of the complexity of their code sets. In complete analogy with the result of Shoenfield about subsets of ω , we establish

THEOREM 1. If $A \subseteq \aleph_1$ and Code(A) is Σ_2^1 , then A is constructible.

Since WO is a Π_1^1 set, this clearly implies that if $A \subseteq \aleph_1$ and Code (A) is Π_2^1 then A is also constructible. Moreover if Solovay's $0^{\#}$ exists, then $0^{\#}$ is a Δ_3^1 subset of ω which is not in L (see [10]). It is easy to see that Code (0[#]) is Δ_3^1 , so our result is essentially best possible.

The weaker result, when Code(A) is Π_1^1 ; was known to Solovay and is implicit in [9]. Solovay's proof uses forcing and cannot be used (apparently) to establish the full result. Our result can be used to give an easy forcing free proof of Solovay's theorem that

$$AD \Rightarrow (\forall A \subseteq \aleph_1) (\exists \alpha) [A \in L[\alpha]].$$

Our use of closed games to avoid forcing traces to [4].

Before we proceed to the main argument, we state and prove a folk-type result concerning the absoluteness of closed games. Let \mathscr{S} be a set of even finite sequences from a set A. We define the game $G_{\mathscr{S}}$ as follows:

Ι	Π	I plays a_0 , II plays b_0 , I then plays
<i>a</i> ₀	b_0	a_1 , II plays b_0 , etc., where all a_i, b_i
<i>a</i> ₁	b_1	are in A.
•	•	Then I wins iff for some n ,
•	•	$(a_0, b_0, \cdots, a_n, b_n) \in \mathscr{S}.$

Clearly the game is open in I.

LEMMA. Let M be a transitive model of ZF + DC containing all the ordinals. Let $A, \mathcal{S} \in M$ and assume A is well orderable in M. Then, I has a winning strategy in $G_{\mathcal{S}} \Leftrightarrow M \models I$ has a winning strategy in $G_{\mathcal{S}}$, and similarly for II. Moreover the player who has a winning strategy has a winning strategy (for the game in the world) which lies in M.

PROOF. For each $(a_0, b_0, \dots, a_n, b_n)$ consider the subgame $G_{\mathscr{G}}(a_0, b_0, \dots, a_n, b_n)$ defined by:

$$I \qquad II \qquad I \text{ plays } c_0, c_1, \cdots, II \text{ plays } d_0, d_1, \cdots \text{ and}$$

$$c_0 \qquad d_0 \qquad I \text{ wins iff for some } m$$

$$c_1 \qquad d_1 \qquad (a_0, b_0, \cdots, a_n, b_n) \frown (c_0, d_0, \cdots, c_m, d_m) \in \mathscr{S}.$$

Then define

$$\mathcal{S}^{\xi} = \{ (a_0, b_0, \dots, a_n, b_n) : \exists a_{n+1} \in A \ \forall b_{n+1} \in A \\ \exists \eta < \xi ((a_0, b_0, \dots, a_{n+1}, b_{n+1}) \in \mathscr{S}^{\eta}) \}.$$

 $\mathscr{G}^0 = \mathscr{G}$

Then for each ξ , $(a_0, b_0, \dots, a_n, b_n) \in \mathscr{S}^{\sharp} \Rightarrow I$ has a winning strategy in $G_{\mathscr{S}}(a_0, b_0, \dots, a_n, b_n)$. Using this we show:

II has a winning strategy in $G \Leftrightarrow \forall \xi[(\) \notin \mathscr{S}^{\xi}]$.

PROOF. If II has a winning strategy in $G_{\mathscr{S}} = G_{\mathscr{S}}((\))$, then I has no winning strategy in $G_{\mathscr{S}}((\))$; thus for all ξ , () $\notin \mathscr{S}^{\xi}$. Conversely assume that for each ξ , () $\notin \mathscr{S}^{\xi}$. We describe a winning strategy for II in $G_{\mathscr{S}}$ as follows: If I plays a_0 , II plays the least b_0 (in a fixed well ordering of A) such that $\forall \xi(a_0, b_0) \notin \mathscr{S}^{\xi}$. Such a b_0 exists, because otherwise for all b, there exists a ξ such that $(a_0, b) \in \mathscr{S}^{\xi}$. Let g(b) = least such ξ and find $\xi_0 >$ all g(b), $b \in A$. Then $\forall b \exists \xi < \xi_0(a_0, b) \in \mathscr{S}^{\xi}$; thus () $\in \mathscr{S}^{\xi_0}$, a contradiction. Similarly if I plays a_1 , II picks the least b_1 such that $\forall \xi(a_0, b_0, a_1, b_1) \notin \mathscr{S}^{\xi}$, etc.

Since the above equivalence was proved under the assumption "ZF + DC + Ais well orderable" and since $\xi \to \mathscr{S}^{\xi}$ is clearly an absolute map and $M \supseteq$ Ordinals, it is immediate that "II has a winning strategy" is absolute for M; thus the same is true for "I has a winning strategy." Moreover the argument above clearly provides a winning strategy for II which lies in M and wins in the world; hence it will be enough, in order to complete the proof, to show that when I has a winning strategy, we can find one (who wins in the world also) in M. Notice that

I has a winning strategy $\Leftrightarrow \exists \xi[(\) \in \mathscr{S}^{\xi}]$

and check that the following is a winning strategy for I which lies in M. Put $\xi_0 = \text{least } \xi$ such that () $\in \mathscr{S}^{\xi}$. If $\xi_0 = 0$, I has already won. If $\xi_0 > 0$, let I play the least a_0 such that for every b, $\exists \xi < \xi_0(a_0, b) \in \mathscr{S}^{\xi}$. If now II plays b_0 , let $\xi_1 = \text{least } \xi < \xi_0$ such that $(a_0, b_0) \in \mathscr{S}^{\xi}$. If $\xi_1 = 0$, I has already won, otherwise

Vol. 12, 1972

PROJECTIVE SETS

let *I* play the least a_1 such that for all b, $\exists \xi < \xi_1(a_0, b_0, a_1, b) \in \mathscr{S}^{\xi}$, etc. (Notice that $\xi_0 > \xi_1 > \cdots$, so this cannot go on.) \dashv

We are now ready to give the

PROOF OF THEOREM 1. Let $A \subseteq \aleph_1$ and $\text{Code}(A) = P \in \sum_{i=1}^{1} \text{Then}$

 $\xi \in A \Leftrightarrow (\exists \alpha) \, (\alpha \in P \, \& \, \big| \, \alpha \, \big| = \xi).$

Let $\alpha \in P \Leftrightarrow \exists \beta \ Q(\alpha, \beta) \Leftrightarrow \exists \beta (f(\alpha, \beta) \in WO)$, where $Q \in \Pi_1^1$ and $f: \mathscr{R} \times \mathscr{R} \to \mathscr{R}$ is recursive and for all $\alpha, \beta, f(\alpha, \beta) \in LOR$. Then

$$\xi \in A \Leftrightarrow \exists \alpha \exists \beta (f(\alpha, \beta) \in WO \& | \alpha | = \xi).$$

Consider the following game G_{ξ} :

I	II						
۲ 0	a_0	b_0	η_0	θ_0	k_0		
5 1	a_1	b_1	η_1	θ_1	k_1		
•	•	•	•	•	•		
•	•	•	•	•	•		
•	•	•	•	•	•		
	α	ß					

I and II play, as in the diagram, natural numbers and ordinals $< \aleph_1$ and II wins iff for every n,

either for some $i \leq n$, $\xi_i \geq \xi$ or all the following are true:

a. The mapping $i \to \eta_i$ $(i \le n)$ is order preserving on the part of $\le_{f(\alpha,\beta)}$ already determined by $((a_0, \dots, a_n), (b_0, \dots, b_n))$ (notice that f is continuous).

b. The mapping $i \to \theta_i$ $(i \le n)$ is order preserving on the part of \le_{α} already determined by (a_0, \dots, a_n) and $\theta_i < \xi$, for each $i \le n$.

c. If $k_i \leq n$, then $\theta_{k_i} = \xi_i$ and if $\langle k_i, k_i \rangle = j \leq n$, then $a_j = 0$.

Notice now the following: For $\xi < \aleph_1, \xi \in A \Leftrightarrow II$ has a winning strategy in G_{ξ} .

PROOF. Assume $\xi \in A$; let α , β be such that $f(\alpha, \beta) \in WO$ and $|\alpha| = \xi$ and let $i \to \eta_i$ be an order preserving map on $\leq_{f(\alpha,\beta)}$ into \aleph_1 and $i \to \theta_i$ a mapping from ω into ξ such that its restriction to Field (\leq_{α}) is an order preserving bijection onto ξ , with inverse g. Consider the following strategy for II in G_{ξ} and verify easily that it is winning: If I plays ξ_0 , II plays $\alpha(0)$, $\beta(0)$, η_0 , θ_0 , $g(\xi_0)$ (unless $\xi_0 \geq \xi$ in which case II plays anything). If I plays ξ_1 , II gives $\alpha(1)$, $\beta(1)$, η_1 , θ_1 , $g(\xi_1)$, etc.

Conversely assume II has a winning strategy. Let I play ξ_0, ξ_1, \cdots enumerating without repetitions ξ , i.e., $\xi = \{\xi_0, \xi_1, \xi_2, \cdots\}$. Then II plays by his winning strategy and produces $\alpha, \beta, (\eta_0, \eta_1, \cdots,), (\theta_0, \theta_1, \cdots), (k_0, k_1, \cdots)$ such that $i \to \eta_i$ is

order preserving on $\leq_{f(\alpha,\beta)}$, thus $f(\alpha,\beta) \in WO$, $i \to \theta_i$ is order preserving on \leq_{α} into ξ , thus $\alpha \in WO$, and finally $\xi_i \to k_i$ is an inverse to $i \to \theta_i$ on Field (\leq_{α}) , hence $|\alpha| = \xi$ and the proof is complete.

It is clear now that $G_{\xi} = G_{\mathscr{S}_{\xi}}$ where \mathscr{S}_{ξ} is a set of finite sequences and moreover the map $\xi \to \mathscr{S}_{\xi}$ is absolute for L. Thus for $\xi < \aleph_1$,

 $\xi \in A \Leftrightarrow II$ has a winning strategy in $G_{\mathscr{G}_{z}}$

 $\Leftrightarrow L \models II$ has a winning strategy in $G_{\mathscr{G}_{\mathcal{E}}}$.

So A is definable in L and therefore $A \in L$. Notice that the definition of A involves as the only parameter \aleph_1 ; thus $A = \tau^L(\aleph_1)$ for some term τ .

REMARK. 1. It is clear that the proof of Theorem 1 relativizes to any real α . Thus if we put

$$\tilde{L} = \{x : \exists \alpha (x \in L[\alpha])\}$$

we have $A \subseteq \aleph_1 \& Code(A) \in \Sigma_2^1 \Rightarrow A \in \tilde{L}$. Kechris has proved a converse assuming $\forall \alpha (\alpha^{\#} \text{ exists})$ (see [10] for this notation), namely

$$\forall \alpha (\alpha^{\#} \text{ exists}) \Rightarrow Every \ A \in L, A \subseteq \aleph_1 \ has \ Code \ (A) \in \Sigma_2^1.$$

Thus $\forall \alpha (\alpha^{\#} \text{ exists})$ implies

(*)
$$A \subseteq \aleph_1 \Rightarrow (A \in \tilde{L} \Leftrightarrow Code \ (A) \in \Sigma_2^1).$$

A proof will appear in his thesis. Moreover (*) can be shown to be consistent with ZF using ideas of [3].

REMARK 2. Let $C \subseteq \mathscr{R}$ be a complete Π_1^1 set (i.e., for every $B \in \Pi_1^1$, there is a recursive $f: \mathscr{R} \to \mathscr{R}$ such that $\alpha \in B \Leftrightarrow f(\alpha) \in C$). Let ϕ be a Π_1^1 -norm on C. Then ϕ has length \aleph_1 (see [5], p. 55). Thus it provides a coding system for ordinals $< \aleph_1$ and we can set for $A \subseteq \aleph_1$,

$$Code_{\phi}(A) = \{ \alpha \in C : \phi(\alpha) \in A \}.$$

Then we can again establish

$$Code_{\phi}(A) \in \Sigma_2^1 \Rightarrow A \in L.$$

The reason is that if $Code_{\phi}(A) \in \Sigma_2^1$, then $Code(A) \in \Sigma_2^1$, since a simple computation shows that the relation

$$\alpha \in C \& \beta \in WO \& \phi(\alpha) = |\beta|$$

is a \sum_{1}^{1} relation.

3. Largest countable \sum_{2n}^{1} sets

Solovay in [8] has proved the following theorem:

Assume $|\mathscr{R} \cap L| = \aleph_0$. Then there exists a largest countable Σ_2^1 set of reals, namely $\mathscr{R} \cap L$. Our next result extends this theorem to higher levels of the analytical hierachy.

THEOREM 2. Assume $|\mathscr{R} \cap OD| = \aleph_0$. Then if Determinacy (Δ_{2n}^1) holds, there exists a largest countable \sum_{2n+2}^1 set.

Before we proceed to the proof let us establish some notation. Let κ be an ordinal. A *tree* T on $\omega \times \kappa$ is a set of finite sequences from $\omega \times \kappa$ such that if $u \in T$ and v is a subsequence of u then $v \in T$. For each such tree T we define the set of its branches by

$$[T] = \{(\alpha, f) \in {}^{\omega}\omega \times {}^{\omega}\kappa \colon \forall n((\alpha(0), f(0)), \cdots, (\alpha(n), f(n))) \in T\}$$

and we put

$$p[T] = \{\alpha \colon \exists f(\alpha, f) \in [T]\}$$

Mansfield in [2] has proved the following theorem:

Assume T is a tree on $\omega \times \kappa$ and A = p[T]. Then if A contains an element not in L[T], A contains a perfect set. (Mansfield used a forcing argument to prove his theorem; later Solovay gave a new forcing-free proof; for more details see [1].) Now let $A \subseteq \mathcal{R}$ and assume $\{\phi_n\}_{n \in \omega}$ is a scale on A. We define the tree T associated with this scale by

$$T = \{ ((\alpha(0), \phi_0(\alpha)), \cdots, (\alpha(n), \phi_n(\alpha))) \colon \alpha \in A \}.$$

Then A = p[T].

PROOF OF THEOREM 2. By the main theorem in [6], $Determinacy(\Delta_{2n}^1)$ implies $Uniformization(\Pi_{2n+1}^1)$. Thus for every countable Σ_{2n+2}^1 set A, we can find a countable Π_{2n+1}^1 set B, so that every real in A is recursive in some real in B. Thus it will be enough to find a countable Σ_{2n+2}^1 set C which contains all countable Π_{2n+1}^1 sets. Then $C^* = \{\alpha: \exists \beta (\beta \in C\& \alpha \text{ is recursive in } \beta)\}$ is the largest countable Σ_{2n+2}^1 set.

Let $W \subseteq \omega \times \mathscr{R}$ be universal for Π_{2n+1}^1 subsets of \mathscr{R} and put

$$\alpha \in \mathscr{P} \Leftrightarrow (\alpha(0), \alpha') \in W,$$

where $\alpha' = (\alpha(1), \alpha(2), \cdots)$. Let also (by Scale (Π_{2n+1}^1)) $\{\phi_n\}_{n \in \omega}$ be a Π_{2n+1}^1 -scale on \mathscr{P} . Let T be the tree associated with this scale.

We now define C and show that it works:

$$\alpha \in C \Leftrightarrow (\exists m) (\widehat{m \alpha} \in \mathscr{P}\& | \{\beta : \phi_0(\widehat{m \beta}) \leq \phi_0(\widehat{m \alpha})\} | \leq \aleph_0)$$

1. $C \in \sum_{2n+2}^{1}$

PROOF. Notice that

$$\alpha \in C \Leftrightarrow \exists m [m \alpha \in \mathscr{P} \& \exists \gamma \forall \delta [\phi_0(m \delta) \leq \phi_0(m \alpha) \Rightarrow \exists k(\delta = (\gamma)_k)]$$

2. C contains every countable Π_{2n+1}^1 set.

PROOF. Let $B \in \Pi_{2n+1}^1$, $B \subseteq \mathscr{R}$, $|B| \leq \aleph_0$. Find *m* such that $\beta \in B \Leftrightarrow (m, \beta) \in W$ $\Leftrightarrow \widehat{m \ \beta} \in \mathscr{P}$. If $B \notin C$, let $\beta_0 \in B - C$. Put $\xi = \phi_0(\widehat{m \ \beta}_0)$. Then since $\beta_0 \notin C$, $|\{\beta: \phi_0(\widehat{m \ \beta}) \leq \xi\}| > \aleph_0$; but $B \supseteq \{\widehat{m \ \beta} \in \mathscr{P}: \phi_0(\widehat{m \ \beta}) \leq \xi\}$, a contradiction. 3. $C \subseteq L[T] \subseteq OD$; thus $|C| = \aleph_0$.

PROOF. It is enough to show that if for some $m, \xi, |\{\beta: \phi_0(\widehat{m}, \beta) \leq \xi\}| \leq \aleph_0$, then $\{\widehat{m}, \beta \in \mathscr{P}: \phi_0(\widehat{m}, \beta) \leq \xi\} \subseteq L[T]$. Put $T_{m,\xi} = \{((k_0, \xi_0), \cdots, (k_l, \xi_l)) \in T: k_0 = m \& \xi_0 \leq \xi\}$. Clearly $T_{m,\xi} \in L[T]$ and the limit property of scales shows that $\alpha \in p[T_{m,\xi}] \Leftrightarrow \alpha \in \mathscr{P} \& \varphi_0(\alpha) \leq \xi \& \alpha(0) = m$. Thus $\{\widehat{m}, \beta \in \mathscr{P}: \varphi_0(\widehat{m}, \beta) \leq \xi\}$ $= p[T_{m,\xi}]$ and so by Mansfield's Theorem

$$\left| \left\{ \beta \colon \phi_0(m \ \beta) \leq \xi \right\} \right| \leq \aleph_0 \Rightarrow$$

$$\left\{ m \ \beta \in \mathscr{P} \colon \phi_0(m \ \beta) \leq \xi \right\} \leq L[T_{m,\xi}] \leq L[T]. \quad +$$

We conclude with an open problem:

It is well known that every countable \sum_{1}^{1} set contains only Δ_{1}^{1} reals. Thus there is no largest countable \sum_{1}^{1} set. Does either of these results generalize to \sum_{2n+1}^{1} $(n \ge 1)$ under any reasonable hypotheses?

REMARK. After seeing a preliminary version of this paper, D. A. Martin observed that $|\mathscr{R} \cap OD| = \aleph_0$ can be replaced by Projective Determinacy in the statement of Theorem 2.

Added in proof: After the completion of this paper Kechris proved (assuming Projective Determinacy) the existence of largest countable Π_{2n+1}^1 sets (for n = 0 this has been also proved independently by Sacks). He also proved (assuming PD) the non-existence of largest countable Σ_{2n+1}^1 sets. Moreover Moschovakis has shown that countable Δ_{2n+1}^1 sets contain only Δ_{2n+1}^1 reals. If this is true for Σ_{2n+1}^1 is still open.

REFERENCES

1. A. S. Kechris and Y. N. Moschovakis, *Notes on the theory of scales*, unpublished multilithed manuscript.

2. R. Mansfield, Perfect subsets of definable sets of real numbers, Pacific J. Math. (2) 35 (1970), 451-457.

3. D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. of Math. Logic 2 (1970), 143-178.

4. Y. N. Moschovakis, The Suslin-Kleene theorem for countable structures, Duke Math. J. (2) 37 (1970), 341-352.

5. Y. N. Moschovakis, Determinancy and pre-well-orderings of the continuum, *Mathe-matical Logic and Foundations of Set Theory*, Edited by Y. Bar Hillel, North-Holland, Amsterdam, London, 1970, 24-62.

6. Y. N. Moschovakis, Uniformization in a playful universe, Bull. Amer. Math. Soc. 77 (1971), 731-736.

7. J. Shoenfield, Mathematical Logic, Addison-Wesley, 1967.

8. R. M. Solovay, On the cardinality of Σ_2^1 sets of reals, Foundations of Mathematics, Symposium papers commemorating the 60th Birthday of Kurt Gödel, Springer-Verlag, 1966, 58-73.

9. R. M. Solovay, *Measurable cardinals and the axiom of determinatenes*, Lecture notes prepared in connection with the Summer Institute of Axiomatic Set Theory held at UCLA, Summer 1967.

10. R. M. Solovay, A non-constructible Δ_3^1 set of integers, Trans. Amer. Math. Soc. 127 (1967), 50-75.

UNIVERSITY OF CALIFORNIA, LOS ANGELES