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ABSTRACT 

In this paper we prove two (rather unrelated) theorems about projective sets. 
The first one asserts that subsets of Nt which are Y~ in the codes are construc- 

thus it extends the familiar theorem of Shoenfield that E2 l subsets of tible; cO 

are constructible. The second is concerned with largest countable Y ~. sets and 
establishes their existence under the hypothesis of Projective Determinacy 
and the assumption that there exist only countably many ordinal definable 
reals. 

1. Preliminaries 

Let  c o = { 0 , 1 , 2 , . . . }  and  N = , o t o =  the set o f  reals. W e  use 0qB,? , . . .  as 

var iables  over  N.  The  product spaces are ~ = X1 x ... x Xk, where X~ = to or  

X~ = N.  I f  P _ 3f, P is cal led a pointset and  we wri te  in te rchangeably  

x e P ~.  P(x). 

The classes 3-,1 r f  1 7. t 1 - - n , - - ,  . . . .  I I , ,  etc. o f  pointsets  are  defined as usual ;  see e.g. 1-7] or  

[5-1 where fur ther  in fo rmat ion  abou t  games and  de te rminacy  can be found.  W e  

wri te  Determinacy (F),  where F is a class o f  pointsets ,  to indicate  tha t  every set 

in F is de te rmined  and  we pu t  

AD,~.,Every pointset is determined. 

Also let Uniformization ( F ) ~  F o r  every re la t ion  P _c N x ~r in F,  there  exists 

a re la t ion  P* in F such tha t  P* _ P and  

3 .P (a ,  x) ~ ~ ! aP*(c~, x). 
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We work entirely in Zermelo-Fraenkel set theory with dependent choices 

(ZF + DC) where 

(DC) Vu ~ x3v(u, v) ~ r :~ 3 fVn  ( f  (n) , f  (n + 1)) ~ r. 

All other hypotheses are stated explicitly. We let OD be the class of  all ordinal 

definable sets. 

Finally we repeat for convenience some definitions from [6]. 

A norm on a pointset P is a function r P->>2, from P onto an ordinal 2, the 

ength of  r We call r a F-norm, where F is a class of  pointsets, if there are 

relations __< r, --< f in F and F = { ~ - P:  P e F} respectively, such that 

P(y) =~ Vx(x <= rY r x <=yy r [P(x) & r __< r 

A scale on a pointset P is a sequence {r of norms on P such that the 

following limit condition holds: 

If  Xo, Xx,' . .~P, if lim,~| x~= x and if for each n and all large enough i, 

r = 2 . ,  then x e P  and for each n, r  2.. 

We call {r ~,o a F-scale if there are relations Sr(n, x, y), SF (n, x, y) in F and 

respectively, such that for each n, 

P(y) ~ Vx(Sr(n, x, y).r SF (n, x, y) r [P(x) & r =< r 

We say that a class of pointsets F has the scale property and we write Scale (F) 

if every set in F has a F-scale. The basic results in [6] state that 

Determinacy (A21.) ~ Scale (H21.+ j), 

Uniformization (YI21. + i). 

2. Subsets of N 1 which are eonstructible 

and 

For  any real cr put 

If  ~ e WO, let 

_-<. = {(m,n): ~((m,n>) =0} ,  

LOR = {a: < .  is an ordering} 

WO = {a: < .  is a well ordering}. 

I ~ I = length of < , .  

Then the mapping ~ 1  ~l, for ~ ~ WO, provides a natural coding system for 

ordinals less than Nx and we define for any A _~ Nt the code set of  A by 

Code(A)= I 
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The question arises, which subsets of Nl are constructible in terms of the com- 

plexity of their code sets. In complete analogy with the result of  Shoenfield about  

subsets of co, we establish 

THEOREM 1. I r A  ~ _ N 1 and Code(A) is ]~12, then A is constructible. 

Since WO is a H~ set, this clearly implies that if A _  N1 and Code (A) is 

1-I2 x then A is also constructible. Moreover if Solovay's 0 # exists, then 0 # is a 

A~ subset of ~o which is not in L (see [10]). It is easy to see that Code (0 #) is 

A~, so our result is essentially best possible. 

The weaker result, when Code(A) is II~; was known to Solovay and is implicit 

in [9]. Solovay's proof uses forcing and cannot be used (apparently) to establish the 

full result. Our result can be used to give an easy forcing free proof of  Solovay's 

theorem that 

AD ~ (VA ~ Ni)(3~ ) [A ~L[~]].  

Our use of closed games to avoid forcing traces to [4]. 

Before we proceed to the main argument, we state and prove a folk-type result 

concerning the absoluteness of closed games. Let ,9 ~ be a set of  even finite sequences 

from a set A. We define the game G~ as follows: 

I II  

ao bo 

al bl 

I plays ao, II plays bo, I then plays 

ax, H plays bo, etc., where all ai, bl 

are in A. 

Then I wins iff for some n, 

(ao, bo, ." ,  a, ,  b,) E s 

Clearly the game is open in I. 

LEMMA. Let M be a transitive model of ZF + DC containing all the ordinals. 

Let A, SP~M and assume A is well orderable in M. Then, I has a winning 

strategy in Gz.~*.M~ I has a winning strategy in G~, and similarly for H. 

Moreover the player who has a winning strategy has a winning strategy (for the 

game in the world) which lies in M. 

PROOF. For each (ao, bo,'", a,, b,) consider the subgame Gs~(ao, bo,'", a,, b,) 

defined by: 
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I I I  I plays Co, e~, . . . , I I  plays do, dD... and 

Co do I wins iff for some m 

el dl (ao, bo,"' ,a,,b,)P'(co, do, '" ,c, , ,d~)eso.  

Then define 

5oo = 5o 

5or {(ao, bo, . . . ,a, ,b,):  9a,+ 1 e A  Vb,+t eA 

3q < ~((av, bo,..., a, + 1, b, + 1) �9 5O~)}. 

Then for each 4, (ao, bo, "", a,, b,) �9 has a winning strategy in 

G.~(ao, bo,'", a,, b,). Using this we show: 

I I  has a winning strategy in G~V4[(  )r  5O~]. 

PROOV. If 11 has a winning strategy in Gy = G y ( ( ) ) ,  then I has no winning 

strategy in Gz(( )); thus for all 4, ( ) r  5Or Conversely assume that for each 

4, ( ) r We describe a winning strategy for I I  in Gz as follows: I f /p lays  ao, 

H plays the least bo (in a fixed well ordering of A) such that V~(ao, bo) r .~r Such 

a bo exists, because otherwise for all b, there exists a 4 such that (ao, b)�9162 

Let 9(b) = least such ~ and find ~o > all 9(b), b � 9  Then Vb 9~ < ~o(ao, b) �9 

thus ( )�9149 a contradiction. Similarly if I plays al, I I  picks the least bl such 

that V4(ao, bo, al, b~) r 5o~, etc. 

Since the above equivalence was proved under the assumption "ZF + DC + A 

is well orderable" and since 4 ~ 5~ is clearly an absolute map and M D_ Ordinals, 

it is immediate that "I I  has a winning strategy" is absolute for M; thus the 

same is true for " I  has a winning strategy." Moreover the argument above 

clearly provides a winning strategy for I I  which lies in M and wins in the world; 

hence it will be enough, in order to complete the proof, to show that when I has a 

winning strategy, we can find one (who wins in the world also) in M. Notice that 

I has a winning strategy ~ 94[( ) ~5o~] 

and check that the following is a winning strategy for I which lies in M. Put 

~o = least ~ such that ( ) �9 5oe. If 4o = 0, I has already won. If 4o > 0, let I play 

the least ao such that for every b, 94 < 4o(ao, b) �9  5o~. If now / /p lays  bo, let 

~ = least ~ < ~o such that (ao, bo) eSpY. If (~ = 0, I has already won, otherwise 
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let I play the least al such that for all b, 3~<~l(ao, bo, at, b)~5: ~, etc. 

(Notice that 4o > ~1 > "", so this cannot go on.) 

We are now ready to give the 

PROOF OF THEOREM 1. Let A _ N1 and Code(A) = P ~ ]~ .  Then 

~ A ~ ( ~ u ) ( a ~ P  &l ~l = 4). 

Let a ~ P ~ f l  Q(~,fl).c~fl(f(~,fl)~WO), where Q~_H~ and f :  ~ x ~ - , ~  is 

recursive and for all c~,fl, f(a, [3)~ LOR. Then 

&la]  = 4). 

Consider the following game G,: 

I II  

~o ao bo ~lo Oo ko 

~i al bl ~h O1 lcl 

I and II play, as in the diagram, natural numbers and ordinals < Nt and II  

wins iff for every n, 

either for some i < n, ~i > ~ or all the following are true: 

a. The mapping i -~ qi (i < n) is order preserving on the part of <y(~ #) already 

determined by ((ao,-.., a,), (bo, '" ,  b,)) (notice that f is continuous). 

b. The mapping i ~ 0i (i < n) is order preserving on the part of  <~ already 

determined by (ao,..-, a,) and 0 i < 4, for each i __< n. 

c. If k i __< n, then Ok, = 4i and if (ki, k~) =.j __< n, then a~ = 0. 

Notice now the following: For ~ < Nt, 4 ~ A ~ II has a winning strategy in Gr 

PROOF. Assume ~ ~ A; let a, fl be such that f(a, fl) ~ WO and I a ] = 4 and let 

i ~ t/i be an order preserving map on <:t,.#) into N1 and i -~ 0~ a mapping from o 

into ~ such that its restriction to Field (< , )  is an order preserving bijection onto ~, 

with inverse g. Consider the following strategy for II in G~ and verify easily that 

it is winning: If  I plays 4o, II plays a(0), fl(0), ~/o, 0o, g(4o) (unless ~o >_- ~ in which 

case II plays anything). If  I plays 41, II gives a(1), fl(1), ~/t, 01, g(~l), etc. 

Conversely assume II has a winning strategy. Let I play ~o, 41,"" enumerating 

without repetitions 4, i.e., ~ = {r  Then II  plays by his winning 

strategy and produces a, fl,(qo, q l , ' " , ) ,  (0o, 01, "..), (ko, kl,. . .) such that i -~ / i  is 
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order preserving on <ic~.B), thus f (a,  fl)~ WO, i ~  Oi is order preserving on < ,  

into r thus a e g/O, and finally ~ -~  k~ is an inverse to i ~  0~ on Field (<~), 

hence [aj = ~ and the proof is complete. 

It is clear now that Gr = Gsp~ where ~V'r is a set of finite sequences and moreover 

the map ~ ~ ~r  is absolute for L. Thus for ~ < N~, 

e A r II  has a winning strategy in G ~  

r L ~ II has a winning strategy in G z r  

So A is definable in L and therefore A E L. Notice that the definition of A involves 

as the only parameter Nt; thus A = ~L(N~) for some term ~. -t 

It is clear that the proof of Theorem 1 relativizes to any real ~. REMARK. 1. 

Thus if we put 

L = {x : 3a(x e L[a])} 

we have A c__ N1 & Code(A) e ~ =:. A e I.. Kechris has proved a converse assuming 

Vu(~* exists) (see [10] for this notation), namely 

Va(~ ~ exists) ~ Every A e L, A c N1 has Code (A) e ~ .  

Thus Va(a # exists) implies 

(*) A c NI -~ (A ~ L .~  Code (A) e ~212). 

A proof will appear in his thesis. Moreover (*) can be shown to be consistent with 

ZF using ideas of [3]. 

REMARK 2. Let C _ ~ be a complete II 1 set (i.e., for every B ~ I l l ,  there is a 

recursive f :  ~ ~ - ~  such that a e B ~ f ( o  0 e C). Let r be a I l l -norm on C. Then 

r has length NI (see [5], p. 55). Thus it provides a coding system for ordinals 

< NI and we can set for A _c Nt, 

Coder = {~ e C: r 0 e A}. 

Then we can again establish 

Cod%(A) e X~ =~ A e L. 

The reason is that if Cod%(A) e ~ ,  then Code(A) e ~ ,  since a simple computa- 

tion shows that the relation 

= 

is a 1~ relation. 
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3. Largest countable ~1 2n sets 

Solovay in [8] has proved the following theorem: 

Assume I 9~ N L I = No. Then there exists a largest countable ~,~ set o f  reals, 

namely ~ n L. Our next result extends this theorem to higher levels of the 

analytical hierachy. 

THEOREM 2. Assume [ ~  f~OD I = No. Then i f  Determinacy (A~n) holds, 

there exists a largest countable ~21n+2 set. 

Before we proceed to the proof let us establish some notation. Let x be an 

ordinal. A tree T on co x lc is a set of finite sequences from co x x such that if 

u ~ T and v is a subsequence of u then v ~ T. For  each such tree T we define the 

set of its branches by 

['T] = {(~,f) c `oco x '~ Vn((~(0),f(0)), ..., (~(n),f(n))) ~ T} 

and we put 

PIT] = {~: 3 f (a , f )  ~ IT]}. 

Mansfield in [2] has proved the following theorem: 

Assume T is a tree on co x ~ and A = piT] .  Then i f  A contains an element not 

in LIT] ,  A contains a perfect set. (Mansfield used a forcing argument to prove 

his theorem; later Solovay gave a new forcing-free proof; for more details see [1].) 

Now let A _ .~ and assume {d?,},~,~ is a scale on A. We define the tree T associated 

with this scale by 

T = {@t(0), ~o(a)), ..., (a(n), ~n(a))): a ~ A}. 

Then A = piT] .  

PROOF OF THEOREM 2. By the main theorem in [6], Determinacy(A~) implies 

Y~2n+2 set A, we can find a Uniformization(II12,+t). Thus for every countable 1 

countable 1 1-Izn+ 1 set B, so that every real in A is recursive in some real in B. Thus 

~2n+2 set C which contains all countable it will be enough to find a countable 

l-lzn+ II sets. Then C* = {a: 3fl(fl ~ C& a is recursive in fl)} is the largest countable 

E' 2n+2 set. 

Let W ~  co x ~ be universal for II~,~+l subsets of ~ and put 

~e ~ - ( ~ ( 0 ) , ~ ' )  e w, 

where a' = (~(1), a(2), ...). Let also (by Scale ( I I~  + 1)) {~bn}n ~'o be a II21, + 1- scale 

on ~ .  Let T be the tree associated with this scale. 
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We now define C and show that it works: 

c -___ I _-__ No) 

1. C~ 1 ~2n+2 

PROOF. Notice that 

~ Cr ~ ~ & 37V6[q~o(m"~ ) < qSo(m'-~ ) ~ 3k(• = (7)k)]] 

2. C contains every countable 1 Yl2n + 1 set. 

PROOF. Let B ~ lI2n+i, n _c ~ ,  [ B[ < No. Find m such that fl cBc~(m ,  fl) e W 

r m'~fl e ~.  If B r C, let flo ~ B -  C. Put ~ = qSo(m'-'flo ). Then since flo ~ C, 

I {fl: ~o(m''fl) < ~}] > No; but B _ {m"~ e ~ :  r < ~}, a contradiction. 

3. C ~_ LIT]  c_ OD; thus [C I= No. 

PROOF. It is enough to show that if for some m,~,] {fl: ~bo(m'-'fl) < ~}[ < No, 

then {m'-'fl r ~ :  ~bo(rn"fl)< ~} ___ L[T] .  Put Tm,e = {((ko,~o),'",(kt,~z))~T: ko 

= m &Co < ~). Clearly Tm,r and the limit property of scales shows that 
" "  

aEp[Tm,r r162  < ~&a(O) = m. Thus {m f l e ~ : q 0  o __<~} 

= p[Tm,r and so by Mansfield's Theorem 

{m'-fl ~ ~ :  ~bo(m'-" fl) < r _ L[T..r _~ LIT]. -t 

We conclude with an open problem: 

It is well known that every countable ~] set contains only A~ reals. Thus there 
1 is no largest countable ~ set. Does either of these results generalize to ~2.+~ 

(n > 1) under any reasonable hypotheses? 

REMARK. After seeing a preliminary version of this paper, D. A. Martin observed 

that I ~ c30D I = No can be replaced by Projective Determinacy in the statement 

of Theorem 2. 

Added in proof: After the completion of this paper Kechris proved (assuming 

Projective Determinacy) the existence of largest countable I121,+1 sets (for 

n = 0 this has been also proved independently by Sacks). He also proved (assum- 

~2,+i sets. Moreover Moschovakis ing PD) the non-existence of largest countable 1 

has shown that countable A2~,+1 sets contain only A2~,+1 reals. If this is true 

for ~ , + l  is still open. 



Vol. 12, 1972 PROJECTIVE SETS 399 

REFERENCES 

1. A. S. Kechris and Y. N. Moschovakis, Notes on the theory of  scales, unpublished multi- 
lithed manuscript. 

2. R. Mansfield, Perfect subsets of  definable sets of  real numbers, Pacific J. Math. (2) 35 
(1970), 451--457. 

3. D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. of Math. Logic 2 
(1970), 143-178. 

4. Y. N. Moschovakis, The Suslin-Kleene theorem for countable structures, Duke Math. 
J. (2) 37 (1970), 341-352. 

5. Y. N. Moschovakis, Determinancy and pre-well-orderings of the continuum, Mathe- 
matleal Logic and Foundations of  Set Theory, Editedby Y. Bar Hillel, North-Holland, Amsterdam, 
London, 1970, 24--62. 

6, Y. N. Moschovakis, Uniformization in a playful universe, Bull. Amer. Math. Soc. 77 
(1971), 731-736. 

7. J. Shoenfield, MathematicaI Logic, Addison-Wesley, 1967. 
8. R. M. Solovay, On the cardinality of  y l sets of  reals, Foundations of Mathematics, 

Symposium papers commemorating the 60th Birthday of Kurt G~Sdel, Springer-Verlag, 1966, 
58-73. 

9. R. M. Solovay, Measurable cardinals and the axiom of  determinatenes, Lecture notes 
prepared in connection with the Summer Institute of Axiomatic Set Theory held at UCLA, 
Summer 1967. 

10. R. M. Solovay, A non-constructible A t set of  integers, Trans. Amer. Math. Soc. 127 
(1967), 50-75. 

UNIVERSITY OF CALIFORNIA, Los ANGELES 


